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every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill 
and judgement in providing such opinions and information.  
 
Under the terms of the Services Agreement, Scion’s liability to FOA in relation to the services provided to 
produce this report is limited to the value of those services. Neither Scion nor any of its employees, 
contractors, agents or other persons acting on its behalf or under its control accept any responsibility to any 
person or organisation in respect of any information or opinion provided in this report in excess of that 
amount. 

 



 

1 

SWP-T006 Initial Eval of genomic Slection to improve wood props_G11  

EXECUTIVE SUMMARY 

The E. nitens genetic improvement programs are predominantly based on open-pollinated progeny 
tests. This approach produces high levels of hidden relatedness whose ignorance causes upward 
bias in genetic parameters. Development of high-throughput genotyping technologies enables 
generation of large amounts of genomic markers that can provide information to construct matrices 
of realized genetic relationship. The advantage of marker based relationship matrices is to fill gaps 
in pairwise relatedness produced by shallow and simple pedigrees commonly present in forest tree 
genetic evaluations and thus reduce the standard errors of genetic parameters. This in turn results 
in more precise selection of valuable genotypes. 
 
Our analysis found the marker based approach has improved the accuracy of genetic parameter 
estimates and also resulted in higher predictive accuracy in cross-validation evaluation. The likely 
source of improvement is the utilization of all the available information in the populations through 
complete pairwise relationship matrix compared to very sparse pedigree-based relationship matrix. 
This besides the faster progress in genetic improvement and delivery are a major benefits to the 
implementation of genomics in forest tree breeding when generally only shallow and simple 
pedigrees are available. The marker based approach found generally lower heritability estimates in 
Tinkers compared to Waiouru which is probably a consequence of a higher selection intensity 
applied in the Tinkers population compared to Waiouru which resulted in a fixation of part of the 
genetic variance. Surprisingly, in the pedigree based approach we found the opposite results in 
several traits such as a15, a16, a17, a39, a40, a41 and ht1 which is probably caused by the 
smaller sample size used to obtain reliable heritability estimates based on pedigree information. In 
addition, breeding values were less accurate in Tinkers compared to the Waiouru population. The 
across seed orchard heritability and breeding values accuracy estimates converted to intermediate 
values between both population estimates. Surprisingly, a larger sample size did not result in 
higher accuracy of genetic parameters. This could be a consequence of merging two populations 
with different selection histories. 
 
We performed cross-validation at both an individual and family. The individual based cross-
validation found that Tinkers population produced higher predictive ability compared to Waiouru 
population which is contrary to the results from heritability and theoretical accuracy estimates. The 
higher predictive accuracy in the Tinkers population can be explained by larger haploblocks which 
are built in populations created under higher selection intensity and thus the whole genetic 
complex can by efficiently captured even by a sparse marker array. The across population cross-
validation produced again intermediate predictive accuracies between both populations (Waiouru 
and Tinkers) and an increase in training population sample size did not help to improve the 
estimates above the Tinkers population. Therefore, the decrease in effective number of genomic 
segments through building of larger haploblocks is more efficient than an increase in training 
population sample size in our population. The family based cross-validation relies purely on linkage 
disequilibrium between markers and QTLs which is the most stable part of genomic prediction. 
Generally, we can find higher predictive ability in Tinkers population which is related to the larger 
haploblocks from more intensive selection. 
 
Generally, it is highly recommended to capture a large proportion of the genetic variability in 
training populations in order to build robust prediction models, making it important to keep a broad 
spectra of genetic material in training populations. Therefore, in genomics based breeding 
programs, the breeding arboretum should be established independently of the production 
population due to different requirements on genetic diversity vs. genetic gain trade-offs to utilize 
genomics at maximum efficiency. 
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INTRODUCTION 

Shining gum (Eucalyptus nitens) is important forest tree species planted in temperate regions of 
Southern hemisphere mainly for pulpwood production. The E. nitens genetic improvement 
programs are predominantly based on open-pollinated progeny tests. This approach in eucalypts 
produces high levels of hidden relatedness due to the fact that the insects, as pollination vectors, 
limit the gene pool available for the next generation. The ignorance of hidden relatedness in 
genetic evaluations causes upward bias in genetic parameters such as additive genetic variance 
and heritability and also changes the ranks of breeding values (El-Kassaby, et al., 2011). 
Development of highly polymorphic genetic markers such as simple sequence repeats (SSRs) or 
Single nucleotide Polymorphisms (SNPs) allowed breeders to perform parentage assignment and 
recover hidden relatedness which in turn improved accuracy of both genetic parameters estimates 
and breeding values ranking (Doerksen, et al., 2010; El-Kassaby, et al., 2011; Telfer, et al., 2015; 
Vidal, et al., 2015).  
 
Development of high-throughput genotyping technologies enables generation of large amounts of 
genomic markers that can provide information to construct matrices of realized genetic relationship 
(Nejati-Javaremi, et al., 1997; VanRaden, 2008). The advantage of marker based relationship 
matrices is to fill gaps in pairwise relatedness produced by shallow and simple pedigrees 
commonly present in forest tree genetic evaluations and thus reduce the standard errors of genetic 
parameters. This in turn results in more precise selection of valuable individuals (El-Kassaby, et 
al., 2011; Vidal, et al., 2015). The genomic prediction model generally captures three factors such 
as 1) share genealogy, 2) co-segregation and 3) linkage disequilibrium between markers and 
quantitative trait loci (QTL) and the contribution of each factor is affected by trait’s genetic 
architecture, marker density and distribution and effective population size (Habier, et al., 2013). 
The accuracy of genomic prediction further depends on trait’s heritability, training population size 
and effective number of genomic segments defined as function of a trait’s genetic architecture 
(distribution of QTLs) and decay of linkage disequilibrium along the chromosome (Hayes, et al., 
2009). The implementation of genomic prediction can accelerate genetic progress accumulated in 
breeding programs and its delivery into production plantation. However, it faces the same 
challenges as conventional breeding such as genotype x environment interaction or age x age 
correlations (Beaulieu, et al., 2014; El-Dien, et al., 2015; Ratcliffe, et al., 2015; Resende, et al., 
2012).  
 
The dense marker arrays also allow the fitting of both additive and non-additive genetic effects 
even in non-clonally propagated field experiments and provide additional information for family or 
clonal forestry (Gamal El-Dien, et al., 2016; Nazarian, et al., 2015). This can be done without 
precise knowledge of the original mating design, required in a normal quantitative-genetic 
pedigree-based analysis. Therefore, the implementation of genomic selection is promising for the 
simple reason that pedigree information can be vastly improved, especially in species with 
breeding programs in initial stages and shallow, simple pedigrees of only a few generations, 
common in most forest tree species. 
 
The aim of our study is to investigate the potential for implementation of genomic selection in an 
open-pollinated progeny test of E. nitens which is a species with mixed mating and thus higher level 
of hidden relatedness and inbreeding coming from two parental populations (seed orchards) with 
different selection history. 
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METHODS 

 
The E. nitens population under study was established as open-pollinated test where families were 
established from two independent seed orchards (Waiouru (46 OP families) and Tinkers (25 OP 
families)) based on different genetic resources. While the Tinkers seed orchard individuals came 
from forward selections in a progeny trial including material of Victorian provenance (showing the 
best growth (King, et al., 1988), progeny trials at Rotoaira established in 1977 from material 
coming from two Australian breeding programs and progeny trials based on NSW provenances, 
the Waiouru seed orchard was designed as a clonal archive and included 123 individuals coming 
from the same number of families (123).  
 
Genomic DNA was extracted from leaf tissues of 691 individuals from progeny trial using 
commercial NucleoSpin Plant II kit (Machery-Nagel, Dϋren, Germany) (Telfer, et al., 2013) and 
sent to GeneSeek, Inc. (a Neogene company, Lincoln, NE, USA) for genotyping (Telfer, et al., 
2015). Genotyping was undertaken using the Illumina Infinium EUChip60K SNP chip (Silva‐Junior, 
et al., 2015) with SNP calling performed on the basis of multi-taxa and/or Maidenaria section 
reference. The marker data were filtered for genTrain score > 0.5, GenCall > 0.15, minor allele 
frequency (MAF) > 0.01, call rate > 0.6 and pairwise linkage disequilibrium in terms of a composite 

estimate (𝑟2 < 0.9).  
 
Seven-year-old individual trees in open-pollinated progeny trial were assessed (phenotyped) for 
growth traits such as height, diameter, straightness and malformation in 2014 and wood quality 
traits such as stiffness, shrinkage and density in 2015 (Table 1) (Suontama, et al., 2016).  
 

Table 1. List of phenotyped traits and their abbreviations. 
 

 

 

Trait Units Abbreviation

Radial air-dry shrinkage 3 m log % a15

Radial reconditioned shrinkage 3 m log % a16

Tangential air-dry shrinkage 3 m log % a17

Tangential reconditioned shrinkage 3 m log % a18

Radial air-dry shrinkage 6 m log % a33

Radial reconditioned shrinkage 6 m log % a34

Tangential air-dry shrinkage 6 m log % a35

Tangential reconditioned shrinkage 6 m log % a36

Radial air-dry shrinkage average 3-6 m log % a39

Radial reconditioned shrinkage average 3-6 m log % a40

Tangential air-dry shrinkage average 3-6 m log % a41

Tangential reconditioned shrinkage average 3-6 m log % a42

Density kg/m3 de6

Diameter at breast height mm dbh6

Height m htm6

Straightness score str6

Malformation score mal6

Acceptability score ac26

Stiffness 1.4-3 m log km/s ht1

Siffness 3-6 m log km/s ht2

Growth strain 1.4-3 m log mm sp1

Growth strain 3-6 m log mm sp2
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The genetic parameters were estimated using mixed linear models implemented in the ASReml-R 
package (Butler, et al., 2009). Two models using pedigree or marker based relationship matrix 
were investigated and compared. A pedigree-based model (BLUP) was used as follows: 
 

𝒚 = 𝐗𝜷 + 𝐙𝟏𝒖 + 𝐙𝟐𝒓 + 𝐙𝟑𝒓(𝒔) + 𝒆 [1] 

 

where y is vector of measurements, β is vector of fixed terms such as intercept and seed source, u 

is vector of additive genetic effects (breeding values) following var(u) ~ N(0,𝜎𝑎
2A), where 𝜎𝑎

2 is 
additive genetic variance and A is average numerator relationship matrix (Wright, 1922), r is vector 

of random replication effects following var(r) ~ N(0,𝜎𝑟
2I) where 𝜎𝑟

2 is replication variance and I is 

identity matrix, r(s) is set nested within replication following var(r(s)) ~ N(0,𝜎𝑟(𝑠)
2 𝐈) where 𝜎𝑟(𝑠)

2  is set 

nested within replication variance, e is vector of residuals following var(e) ~ N(0,𝜎𝑒
2I), where 𝜎𝑒

2 is 
residual variance, X and Z1, Z2 and Z3 are incidence matrices assigning fixed and random effects to 
measurements in vector y.  The model accommodating marker based relationship matrix (GBLUP) 
is performed following equation [1] but average numerator relationship matrix A is substituted by 
marker based relationship matrix G which was estimated as follows: 
 

𝑮 =
𝒁𝒁′

𝑡𝑟[𝒁𝒁′]/𝑛
 [2] 

 
Where Z is M – P, M is marker matrix with genotypes coded 0, 1 and 2 for alternative allele 
homozygote, heterozygote and reference allele homozygote and P is vector of twice of allele 
frequency, tr[ZZ’] is trace of matrix defined in nominator and n is the number of markers (Forni, et 
al., 2011). The heritability represents proportion explained by genetic factors and can provide 
inference about potential efficiency of any improvement. It is estimated following: 
 

ℎ̂2 =
�̂�𝑎
2

�̂�𝑎
2+�̂�𝑒

2 [3] 

 

where 𝜎𝑎
2 is additive genetic variance and 𝜎𝑒

2 is residual variance. Standard errors were estimated 
by Delta method approximation. The accuracy of breeding values represents correlation of their 
estimates obtained from model (Equation 1) with true breeding values which are commonly 
unknown and are estimated following: 
 

𝑟 = √1 −
𝑃𝐸𝑉

𝐺𝑖𝑖𝜎𝑎
2 [4] 

 
where PEV is prediction error variance (Mrode, 2014) and 𝐺𝑖𝑖 is diagonal element of realized 
relationship matrix for ith individual and is substituted by Aii in pedigree based scenario. The 10-fold 
cross-validation was used as independent evaluation. The folding was performed on individual and 
family level and within, between and across seed sources. The predictive accuracy represents 
efficiency of marker based model as prediction tool to predict breeding values based on only 
marker information. Such scenario is representing main advantage of implementation of genomic 
selection in breeding programs by leaving testing phase (establishment of progeny trial) out of 
breeding cycle and perform selection based on only genetic markers. It was estimated as follows: 
 

𝑟𝑝 = 𝑐𝑜𝑟(𝐸𝐵𝑉, 𝐺𝐸𝐵𝑉) [5] 

 
where EBV is vector of breeding values estimated by pedigree based model and GEBV is vector of 
predicted breeding values using GBLUP model. 
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RESULTS 

The marker data generated by using EU60K SNP chip produced solid data with very little missing 
data. The SNPs were called with an algorithm generic to the consensus reference across all 12 
species involved in the SNP chip and also specific to E. nitens as reference. Both call algorithms 
produced a similar number of SNPs (58,307 vs. 58,323). The call rates reached 0.8 - 1 for majority 
of the markers (Figure 1 left). Similarly, sample call rate reached between 0.9 – 1 (Figure 1 right).  

 

Figure 1. SNP (left plot) and sample (right plot) call rates. 
 
Linkage disequilibrium decreased to 0.2 within 5 kb which is reflecting high genetic variability and 
is common to many forest tree species (Figure 2). 

 
Figure 2. Linkage disequilibrium decay with physical distance in base pairs. 
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The SNPs were further filtered for MAF, call rate and pairwise linkage disequilibrium and only 
12,236 SNPs selected were selected and used to train genomic prediction models. The marker-
based analysis results in increased accuracy of breeding values and genetic parameters such as 
additive genetic variance and heritability. The model was tested for each seed orchard separately 
as well as across both seed orchards. 
 

 
 

Figure 3. Spectral decomposition of genetic marker based relationship matrix. 
 

 
The spectral decomposition of realized relationship matrix showed clear segregation of each seed 
orchard population with ATSC families in between. It reflects the difference in the genetic 
background due to sampling strategies. 
 

Genetic parameter estimates 
Pedigree-based analysis showed generally low heritabilities estimated in progeny from the 
Waiouru seed orchard population reaching from 0 to 0.29 compared with the Tinkers seed orchard 
population (0.01 to 0.61). However, there are several exceptions such as  a35, str6, a36, a18, a42 
de6 where the Waiouru seed orchard population showed much higher heritability, ranging between 
0.4 – 0.54 compared with the Tinkers seed orchard population which ranged between 0.11 – 0.49. 
The lowest heritability estimates were found in malformation and acceptability, which are scale 
based subjective assessments, reaching values from 0 to 0.07. The marker-based heritability 
estimates generally produced lower hertiability estimates under increased accuracy (smaller 
standard errors) and follow similar patterns in both seed orchard populations. High discrepancies 
between pedigree and marker based estimates were observed in height and diameter where 
marker based significant heritability was observed in Waiouru but not in Tinkers while opposite 
pattern was obtained in pedigree based alternative. The breeding value accuracies were higher in 
marker based analysis reaching from 0.23 to 0.79 within both seed orchard populations (Table 2).  
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Across seed orchard heritability estimates were generally higher and more accurate in marker 
based analysis with few exceptions such as str6, a40, a34. Most traits showed statistically 
significant heritability estimates and only low heritable traits (heritability estimates reaching from 
0.00 to 0.08) such as mal6, htm6 (sp_htm6), dbh6 (sp_dbh6) and acc6 showed statistically non-
significant estimates. The malformation (mal6) and acceptability (acc6) are scale based subjective 
criterions which can be highly biased and thus reach very low genetic component while the wood 
properties in term of shrinkage seem to be measured under high precision and genetic component 
is mostly statistically significant. The accuracy of breeding value estimates was lower in pedigree 
based analysis reaching from 0 to 0.68 compared to marker based estimates reaching from 0.23 to 
0.77 and was highly dependent on heritability (correlation between heritability and accuracy of 
breeding values was 0.95 in pedigree based and 0.97 in marker based analysis) (Table 3). 
 

Table 2. Within seed orchard heritability, standard errors and breeding value accuracies. 
 

 
 
 
 

Cross-validation 
The individual based folding showed no or very low predictive accuracy to predict breeding values 
of one seed orchard based on model trained in alternative seed orchard in pedigree based 
evaluation. The traits showing predictive ability are h1, sp1 and sp2 and achieved higher accuracy 
when Waiouru is used as training population to predict Tinkers population (0.1 to 0.29) compared 
to predictions in the opposite scenario which only achieved 0.02 to 0.14. The marker based 
analysis shows higher predictive accuracy between seed orchards in traits such as a18, a35, a41 
and a42 reaching from 0.06 to 0.11 when Waiouru was used as training population and from 0.02 
to 0.08 in the opposite scenario. Within seed orchard predictive accuracy reached, in pedigree 
base analysis from 0 to 0.36 in Waiouru population and from 0.13 to 0.35 in Tinkers while in 
marker based analysis the accuracy reached from 0.03 to 0.49 in the Waiouru population and from 
0.24 to 0.52 in the Tinkers population.   
 
 
 

 

h2 se r h2 se r h2 se r h2 se r

a15 0.27 0.112 0.56 0.36 0.076 0.70 0.41 0.128 0.66 0.22 0.060 0.60

a16 0.26 0.111 0.55 0.26 0.070 0.63 0.32 0.119 0.60 0.27 0.064 0.64

a17 0.00 0.000 0.00 0.06 0.049 0.38 0.12 0.090 0.39 0.16 0.058 0.54

a18 0.47 0.134 0.70 0.45 0.071 0.75 0.37 0.126 0.63 0.33 0.070 0.68

a33 0.15 0.096 0.44 0.23 0.067 0.61 0.35 0.120 0.62 0.16 0.058 0.54

a34 0.13 0.095 0.41 0.25 0.069 0.62 0.61 0.150 0.79 0.20 0.063 0.58

a35 0.40 0.126 0.65 0.37 0.073 0.71 0.14 0.097 0.43 0.21 0.065 0.59

a36 0.44 0.131 0.68 0.42 0.068 0.74 0.49 0.138 0.72 0.35 0.067 0.70

a39 0.26 0.110 0.55 0.35 0.074 0.70 0.52 0.141 0.73 0.22 0.062 0.60

a40 0.25 0.110 0.54 0.33 0.073 0.68 0.58 0.146 0.77 0.24 0.063 0.62

a41 0.22 0.106 0.51 0.20 0.066 0.58 0.31 0.117 0.59 0.37 0.072 0.71

a42 0.51 0.139 0.73 0.50 0.067 0.78 0.43 0.132 0.68 0.39 0.070 0.72

de6 0.54 0.141 0.74 0.52 0.068 0.79 0.34 0.117 0.62 0.42 0.061 0.74

str6 0.41 0.130 0.66 0.19 0.063 0.57 0.11 0.089 0.37 0.12 0.059 0.48

mal6 0.09 0.092 0.35 0.00 0.000 0.23 0.01 0.081 0.10 0.03 0.040 0.30

acc6 0.13 0.092 0.40 0.02 0.042 0.27 0.07 0.083 0.30 0.05 0.045 0.35

ht1 0.28 0.112 0.56 0.34 0.072 0.69 0.35 0.120 0.62 0.24 0.060 0.62

ht2 0.19 0.100 0.48 0.30 0.071 0.66 0.15 0.099 0.44 0.18 0.057 0.56

sp1 NA NA NA 0.21 0.064 0.59 NA NA NA 0.25 0.061 0.62

sp2 0.25 0.111 0.53 0.23 0.066 0.60 0.24 0.111 0.52 0.30 0.066 0.66

sp_dbh6 0.00 0.000 0.00 0.14 0.062 0.51 0.29 0.112 0.57 0.03 0.039 0.29

sp_htm6 0.00 0.000 0.00 0.14 0.062 0.51 0.29 0.112 0.57 0.03 0.039 0.29

Trait

Waiouru Tinkers

pedigree marker pedigree marker
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Table 3. Across seed orchard heritability, standard errors and breeding values accuracy. 

 

 
Table 4. Prediction accuracy in analysis based on family folding. 

 

 

 

h2 se r h2 se r

a15 0.28 0.113 0.57 0.31 0.072 0.67

a16 0.29 0.116 0.58 0.26 0.068 0.64

a17 0.33 0.117 0.60 0.43 0.073 0.74

a18 0.44 0.131 0.68 0.47 0.072 0.76

a33 0.21 0.103 0.50 0.22 0.066 0.60

a34 0.34 0.123 0.61 0.25 0.070 0.63

a35 0.28 0.113 0.57 0.41 0.075 0.73

a36 0.42 0.129 0.67 0.42 0.069 0.73

a39 0.31 0.116 0.59 0.33 0.073 0.68

a40 0.41 0.128 0.66 0.31 0.071 0.67

a41 0.37 0.123 0.63 0.50 0.073 0.77

a42 0.44 0.131 0.68 0.49 0.070 0.77

de6 0.44 0.130 0.68 0.46 0.067 0.76

str6 0.28 0.115 0.57 0.19 0.064 0.57

mal6 0.00 0.000 0.00 0.00 0.000 0.23

acc6 0.08 0.085 0.32 0.03 0.042 0.30

ht1 0.24 0.108 0.52 0.29 0.070 0.65

ht2 0.12 0.094 0.39 0.17 0.063 0.55

sp1 NA NA NA 0.23 0.065 0.60

sp2 0.16 0.101 0.44 0.24 0.068 0.60

sp_dbh6 0.09 0.085 0.34 0.08 0.052 0.42

sp_htm6 0.09 0.085 0.34 0.08 0.052 0.42

Trait

Across

pedigree marker

Waiouru -> Tinkers Waiouru Tinkers -> Waiouru Tinkers across Waiouru -> Tinkers Waiouru Tinkers -> Waiouru Tinkers across

a15 NA NA NA NA NA 0.00 0.02 0.02 0.04 0.07

a16 NA NA NA NA NA 0.01 0.01 0.01 0.05 0.08

a17 NA NA NA NA NA -0.08 0.00 0.06 0.02 0.02

a18 NA NA NA NA NA 0.05 0.03 0.07 0.03 0.09

a33 NA NA NA NA NA 0.01 0.01 -0.04 0.01 0.03

a34 NA NA NA NA NA 0.04 0.04 0.02 -0.01 0.08

a35 NA NA NA NA NA 0.09 0.03 0.06 0.02 0.06

a36 NA NA NA NA NA NA 0.03 0.01 0.04 0.10

a39 NA NA NA NA NA 0.03 0.02 0.03 0.03 0.06

a40 NA NA NA NA NA 0.01 0.02 0.02 0.04 0.09

a41 NA NA NA NA NA 0.09 0.02 0.08 0.03 0.07

a42 NA NA NA NA NA 0.05 0.04 0.02 0.03 0.10

de6 NA NA NA NA NA 0.01 0.10 0.02 0.02 0.18

ht1 NA NA NA NA NA 0.00 0.01 0.00 0.05 0.10

ht2 NA NA NA NA NA -0.01 0.00 -0.06 0.01 0.02

sp1 NA NA NA NA NA 0.02 -0.04 -0.04 0.02 0.00

sp2 NA NA NA NA NA -0.01 -0.04 -0.05 0.06 0.06

dhb6 NA NA NA NA NA -0.03 0.05 0.05 -0.01 0.08

htm6 NA NA NA NA NA -0.01 0.05 0.06 0.00 0.07

mal6 NA NA NA NA NA 0.05 0.00 0.06 0.00 0.01

str6 NA NA NA NA NA 0.04 0.03 -0.05 0.00 0.05

acc6 NA NA NA NA NA 0.03 0.02 -0.02 -0.02 0.01

Family

Pedigree based model Marker based modelTrait
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Table 5. Prediction accuracy in analysis based on individual folding. 
 

 

 
Across seed orchard predictive accuracy ranged from 0.01 to 0.32 in pedigree based and from 
0.04 to 0.46 in marker based analysis. 
 
Family based folding was investigated only in the marker-based analysis due to inability of the 
pedigree based scenario to predict unrelated individuals. We found higher predictive ability within 
the Waiouru population reaching from -0.04 to 0.1 compared to the Tinkers population where 
accuracies ranged from -0.01 to 0.06. Across seed orchard predictive accuracy reached from 0 to 
0.18. 

Waiouru -> Tinkers Waiouru Tinkers -> Waiouru Tinkers across Waiouru -> Tinkers Waiouru Tinkers -> Waiouru Tinkers across

a15 0.06 0.26 0.02 0.33 0.30 0.01 0.34 0.02 0.37 0.34

a16 -0.02 0.16 -0.07 0.20 0.17 0.00 0.23 0.01 0.33 0.25

a17 -0.17 0.00 0.05 0.13 0.01 -0.09 0.03 0.05 0.25 0.04

a18 -0.01 0.26 0.01 0.20 0.26 0.08 0.34 0.09 0.37 0.34

a33 -0.02 0.20 -0.03 0.33 0.26 0.01 0.30 -0.06 0.34 0.29

a34 -0.22 0.10 -0.15 0.30 0.23 0.06 0.18 0.02 0.26 0.23

a35 0.00 0.28 0.00 0.16 0.23 0.11 0.33 0.04 0.26 0.31

a36 -0.03 0.24 -0.01 0.21 0.23 0.04 0.33 0.03 0.37 0.34

a39 -0.01 0.22 -0.03 0.35 0.29 0.03 0.33 0.00 0.36 0.34

a40 -0.07 0.12 -0.12 0.26 0.19 0.03 0.21 0.04 0.31 0.26

a41 -0.09 0.13 0.03 0.20 0.16 0.08 0.19 0.08 0.37 0.26

a42 -0.07 0.28 -0.02 0.18 0.27 0.07 0.38 0.07 0.38 0.38

de6 -0.03 0.36 -0.01 0.27 0.32 0.02 0.49 0.03 0.52 0.46

ht1 0.10 0.25 0.02 0.31 0.28 0.04 0.33 -0.02 0.38 0.33

ht2 -0.06 0.28 0.02 0.16 0.21 0.03 0.32 -0.04 0.24 0.25

sp1 0.29 0.22 0.13 0.27 0.24 -0.01 0.30 -0.01 0.36 0.30

sp2 0.23 0.27 0.14 0.19 0.24 -0.05 0.35 -0.07 0.40 0.35

dhb6 0.15 0.13 0.10 0.43 0.28 -0.03 0.26 0.04 0.13 0.22

htm6 0.19 0.13 0.10 0.42 0.27 -0.03 0.26 0.04 0.15 0.21

mal6 0.02 0.03 0.07 0.03 0.01 0.11 0.01 0.07 0.05 0.02

str6 -0.09 0.04 -0.04 -0.01 0.02 -0.01 0.05 -0.04 -0.04 0.02

acc6 0.19 0.12 0.12 0.11 0.12 0.04 0.07 -0.02 0.08 0.08

Individuals

Pedigree based model Marker based modelTrait



 

10 

SWP-T006 Initial Eval of genomic Slection to improve wood props_G11  

CONCLUSION 

The forest tree breeding programs are generally at a very early stage compared to species with 
faster generation times which causes genetic parameter estimates to be less accurate and thus 
less precise selection of the best genotypes. The development and application of genetic markers 
improves genetic parameters through pedigree reconstruction which effectively recovers hidden 
relatedness and corrects pedigree errors (Doerksen, et al., 2010; El-Kassaby, et al., 2011; Telfer, 
et al., 2015; Vidal, et al., 2015). Such improvement in pedigree accuracies increase the precision 
of genetic parameters estimation and can be further explored by dense marker arrays to capture 
Mendelian sampling terms with construction of marker based relationship matrix (Habier, et al., 
2007; Hayes, et al., 2009; VanRaden, 2008). The EUChip60K SNP chip (Silva‐Junior, et al., 2015) 
was used in our analysis and  provided solid data with minimum of missing values (Figure 1) which 
is desirable to perform efficient and accurate genomic evaluation. The SNP chip was designed on 
multiple Eucalyptus species which resulted in a significant reduction in the final number of SNPs 
used in the analysis (~13K) due to lack of polymorphism.  However, this still provided a reasonable 
amount of genomic information with which to perform efficient genomic prediction.  
 
Our analysis found the marker based approach has improved the accuracy of genetic parameter 
estimates and also resulted in higher predictive accuracy in cross-validation evaluation. The likely 
source of improvement is the utilization of all the available information in the populations through 
complete pairwise relationship matrix compared to very sparse pedigree-based relationship matrix. 
This besides the faster progress in genetic improvement and delivery are a major benefits to the 
implementation of genomics in forest tree breeding when generally only shallow and simple 
pedigrees are available. Such dense relationship matrices allow us to dissect not only genetic and 
environment components more precisely but also additive and non-additive genetic components by 
construction of non-additive relationship matrices in simple experimental designs where pedigree 
based analysis does not allow to analyse it (Gamal El-Dien, et al., 2016). Such an option is 
attractive in species with efficient vegetative propagation when no clonal replications are involved 
in testing. Also, such a scenario would favour the application of genomics since the number of 
genotyped individuals in a given training population is more important than phenotyping fidelity 
when predicting genomic breeding values. The marker based approach found generally lower 
heritability estimates in Tinkers compared to Waiouru which is probably a consequence of a higher 
selection intensity applied in the Tinkers population compared to Waiouru which resulted in a 
fixation of part of the genetic variance. Surprisingly, in the pedigree based approach we found the 
opposite results in several traits such as a15, a16, a17, a39, a40, a41 and ht1 which is probably 
caused by the smaller sample size used to obtain reliable heritability estimates based on pedigree 
information. In addition, breeding values were less accurate in Tinkers compared to the Waiouru 
population (Table 2). The across seed orchard heritability and breeding values accuracy estimates 
converted to intermediate values between both population estimates. Surprisingly, a larger sample 
size did not result in higher accuracy of genetic parameters. This could be a consequence of 
merging two populations with different selection histories (Table 3).  
 

Genomic prediction relies on three factors: shared genealogy, co-segregation and linkage 
disequilibrium between markers and quantitative trait loci (QTL) (Habier, et al., 2013). We 
performed cross-validation at both an individual and family level to dissect the effects of these 
three factors. The individual based cross-validation captures all of the effects and we found that 
Tinkers population produced higher predictive ability compared to Waiouru population which is 
contrary to the results from heritability and theoretical accuracy estimates. The higher predictive 
accuracy in the Tinkers population can be explained by larger haploblocks which are built in 
populations created under higher selection intensity and thus the whole genetic complex can by 
efficiently captured even by a sparse marker array (Ødegård, et al., 2014). However, transferability 
of such a prediction model is highly reduced and can be seen in the cross-validation between seed 
populations where the Waiouru training population produces a slightly higher predictive ability but 
the effect is limited through very small sample size in training population. The across population 
cross-validation produced again intermediate predictive accuracies between both populations 
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(Waiouru and Tinkers) and an increase in training population sample size did not help to improve 
the estimates above the Tinkers population. Therefore, the decrease in effective number of 
genomic segments through building of larger haploblocks is more efficient than an increase in 
training population sample size in our population. However, the infusion of new genetic material or 
changes in selection can cause changes in the haploblocks and thus decrease in prediction 
accuracy (Table 5).  
 
The family based cross-validation relies purely on linkage disequilibrium between markers and 
QTLs which is the most stable part of genomic prediction. Generally, we can find higher predictive 
ability in Tinkers population which is related to the larger haploblocks from more intensive 
selection. There are a few exceptions with the most obvious contradiction in de6 which could be 
caused by a fixation of many causal variants through more intensive selection which also resulted 
in decreased heritability estimate (Table 2). The across population family based cross-validation 
resulted in higher predictive ability compared to single population evaluation which can be result of 
larger training population sample size but also capturing historical relatedness as the two 
populations are clearly split into two clusters (Table 5, Figure 3). 
  
Generally, it is highly recommended to capture a large proportion of the genetic variability in 
training populations in order to build robust prediction models, making it important to keep a broad 
spectra of genetic material in training populations. Therefore, in genomics based breeding 
programs, the breeding arboretum should be established independently of the production 
population due to different requirements on genetic diversity vs. genetic gain trade-offs to utilize 
genomics at maximum efficiency. 
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